skip to main content


Search for: All records

Creators/Authors contains: "Matteo, Tiziana Di"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We study quasar proximity zones in a simulation that includes a self-consistent quasar formation model and realistic intergalactic medium (IGM) environments. The quasar host halo is 1013 M⊙ at z = 6, more massive than typical halos studied in previous work. Between 6 < z < 7.5, the quasar luminosity varies rapidly, with a mean magnitude of MUV, mean = −24.8 and the fluctuation reaching up to two orders of magnitude. Using this light curve to post-process the dense environment around the quasar, we find that the proximity zone size (Rp) ranges between 0.5 and 5 pMpc. We show that the light curve variability causes a similar degree of scatter in Rp as does the density fluctuation, both of which result in a standard deviation of ∼0.3 pMpc. The Rp traces the light curve fluctuations closely but with a time delay of ∼104 yr, breaking the correspondence between the Rp and the contemporaneous MUV. This also indicates that we can only infer quasar activity within the past ∼104 yr instead of the integrated lifetime from Rp in the later part of cosmic reionization. Compared with the variable light curve, a constant light curve underestimates the Rp by 13 per cent at the dim end (MUV ∼ −23.5), and overestimates the Rp by 30 per cent at the bright end (MUV ∼ −26). By calculating the Rp generated by a number of quasars, we show that variable light curves predict a wider Rp distribution than lightbulb models, and readily explain the extremely small Rp values that have been observed.

     
    more » « less
  2. ABSTRACT

    In this work, we extend our recently developed super-resolution (SR) model for cosmological simulations to produce fully time-consistent evolving representations of the particle phase-space distribution. We employ a style-based constrained generative adversarial network (StyleGAN), where the changing cosmic time is an input style parameter to the network. The matter power spectrum and halo mass function agree well with results from high-resolution N-body simulations over the full trained redshift range (10 ≤ z ≤ 0). Furthermore, we assess the temporal consistency of our SR model by constructing halo merger trees. We examine progenitors, descendants, and mass growth along the tree branches. All statistical indicators demonstrate the ability of our SR model to generate satisfactory high-resolution simulations based on low-resolution inputs.

     
    more » « less
  3. Abstract

    The statistics of galactic-scale quasar pairs can elucidate our understanding of the dynamical evolution of supermassive black hole (SMBH) pairs, the duty cycles of quasar activity in mergers, or even the nature of dark matter, but they have been challenging to measure at cosmic noon, the prime epoch of massive galaxy and SMBH formation. Here we measure a double quasar fraction of ∼6.2 ± 0.5 × 10−4integrated over ∼0.″3–3″ separations (projected physical separations of ∼3–30 kpc atz∼ 2) in luminous (Lbol> 1045.8erg s−1) unobscured quasars at 1.5 <z< 3.5 using Gaia EDR3-resolved pairs around SDSS DR16 quasars. The measurement was based on a sample of 60 Gaia-resolved double quasars (out of 487 Gaia pairs dominated by quasar+star superpositions) at these separations, corrected for pair completeness in Gaia, which we quantify as functions of pair separation, magnitude of the primary, and magnitude contrast. The double quasar fraction increases toward smaller separations by a factor of ∼5 over these scales. The division between physical quasar pairs and lensed quasars in our sample is currently unknown, requiring dedicated follow-up observations (in particular, deep, subarcsecond-resolution IR imaging for the closest pairs). Intriguingly, at this point, the observed pair statistics are in rough agreement with theoretical predictions both for the lensed quasar population in mock catalogs and for dual quasars in cosmological hydrodynamic simulations. Upcoming wide-field imaging/spectroscopic space missions such as Euclid, CSST, and Roman, combined with targeted follow-up observations, will conclusively measure the abundances and host galaxy properties of galactic-scale quasar pairs, offset AGNs, and subarcsecond lensed quasars across cosmic time.

     
    more » « less
  4. Abstract We carry out a comparative analysis of the relation between the mass of supermassive black holes (BHs) and the stellar mass of their host galaxies at 0.2 < z < 1.7 using well-matched observations and multiple state-of-the-art simulations (e.g., MassiveBlackII, Horizon-AGN, Illustris, TNG, and a semianalytic model). The observed sample consists of 646 uniformly selected Sloan Digital Sky Survey quasars (0.2 < z < 0.8) and 32 broad-line active galactic nuclei (AGNs; 1.2 < z < 1.7) with imaging from Hyper Suprime-Cam (HSC) for the former and Hubble Space Telescope (HST) for the latter. We first add realistic observational uncertainties to the simulation data and then construct a simulated sample in the same manner as the observations. Over the full redshift range, our analysis demonstrates that all simulations predict a level of intrinsic scatter of the scaling relations comparable to the observations that appear to agree with the dispersion of the local relation. Regarding the mean relation, Horizon-AGN and TNG are in closest agreement with the observations at low and high redshift ( z ∼ 0.2 and 1.5, respectively), while the other simulations show subtle differences within the uncertainties. For insight into the physics involved, the scatter of the scaling relation, seen in the SAM, is reduced by a factor of two and closer to the observations after adopting a new feedback model that considers the geometry of the AGN outflow. The consistency in the dispersion with redshift in our analysis supports the importance of both quasar- and radio-mode feedback prescriptions in the simulations. Finally, we highlight the importance of increasing the sensitivity (e.g., using the James Webb Space Telescope), thereby pushing to lower masses and minimizing biases due to selection effects. 
    more » « less
  5. ABSTRACT

    We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $z$ ≳ 6 quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in the IllustrisTNG simulations. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $\gtrsim 10^{12}\, {\rm M}_{\odot }\,h^{-1}$ haloes by $z$ = 7) using a  (9 Mpc h−1)3 simulated volume. BH growth is maximal within haloes that are compact and have a low tidal field. For these haloes, we consider an array of gas-based seeding prescriptions wherein $M_{\mathrm{seed}}=10^4\!-\!10^6\, {\rm M}_{\odot }\,h^{-1}$ seeds are inserted in haloes above critical thresholds for halo mass and dense, metal-poor gas mass (defined as $\tilde{M}_{\mathrm{h}}$ and $\tilde{M}_{\mathrm{sf,mp}}$, respectively, in units of Mseed). We find that a seed model with $\tilde{M}_{\mathrm{sf,mp}}=5$ and $\tilde{M}_{\mathrm{h}}=3000$ successfully produces a $z$ ∼ 6 quasar with $\sim 10^9\, {\rm M}_{\odot }$ mass and ∼1047 erg s−1 luminosity. BH mergers play a crucial role at $z$ ≳ 9, causing an early boost in BH mass at a time when accretion-driven BH growth is negligible. With more stringent seeding conditions (e.g. $\tilde{M}_{\mathrm{sf,mp}}=1000$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $z$ ≳ 6 quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors ≳10) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for super-Eddington accretion, or by reducing the radiative efficiency. Our results demonstrate that progenitors of $z$ ∼ 6 quasars have distinct BH merger histories for different seeding models, which will be distinguishable with Laser Interferometer Space Antenna observations.

     
    more » « less
  6. ABSTRACT

    We examine massive black hole (MBH) mergers and their associated gravitational wave signals from the large-volume cosmological simulation Astrid . Astrid includes galaxy formation and black hole models recently updated with an MBH seed population between 3 × 104h−1M⊙ and 3 × 105h−1M⊙ and a sub-grid dynamical friction (DF) model to follow the MBH dynamics down to 1.5 ckpc h−1. We calculate the initial eccentricities of MBH orbits directly from the simulation at kpc-scales, and find orbital eccentricities above 0.7 for most MBH pairs before the numerical merger. After approximating unresolved evolution on scales below ${\sim 200\, \text{pc}}$, we find that the in-simulation DF on large scales accounts for more than half of the total orbital decay time ($\sim 500\, \text{Myr}$) due to DF. The binary hardening time is an order of magnitude longer than the DF time, especially for the seed-mass binaries (MBH < 2Mseed). As a result, only $\lesssim 20{{\rm per \,cent}}$ of seed MBH pairs merge at z > 3 after considering both unresolved DF evolution and binary hardening. These z > 3 seed-mass mergers are hosted in a biased population of galaxies with the highest stellar masses of $\gt 10^9\, {\rm M}_\odot$. With the higher initial eccentricity prediction from Astrid , we estimate an expected merger rate of 0.3−0.7 per year from the z > 3 MBH population. This is a factor of ∼7 higher than the prediction using the circular orbit assumption. The Laser Interferometer Space Antenna events are expected at a similar rate, and comprise $\gtrsim 60\,{\rm{per\,cent}}$ seed-seed mergers, $\sim 30\,{\rm{per\,cent}}$ involving only one seed-mass MBH, and $\sim 10\,{\rm{per\,cent}}$ mergers of non-seed MBHs.

     
    more » « less
  7. ABSTRACT

    We present a mock image catalogue of ∼100 000 MUV ≃ −22.5 to −19.6 mag galaxies at z = 7–12 from the bluetides cosmological simulation. We create mock images of each galaxy with the James Webb Space Telescope (JWST), Hubble, Roman, and Euclid Space Telescopes, as well as Subaru, and VISTA, with a range of near- and mid-infrared filters. We perform photometry on the mock images to estimate the success of these instruments for detecting high-z galaxies. We predict that JWST will have unprecedented power in detecting high-z galaxies, with a 95 per cent completeness limit at least 2.5 mag fainter than VISTA and Subaru, 1.1 mag fainter than Hubble, and 0.9 mag fainter than Roman, for the same wavelength and exposure time. Focusing on JWST, we consider a range of exposure times and filters, and find that the NIRCam F356W and F277W filters will detect the faintest galaxies, with 95 per cent completeness at m ≃ 27.4 mag in 10-ks exposures. We also predict the number of high-z galaxies that will be discovered by upcoming JWST imaging surveys. We predict that the COSMOS-Web survey will detect ∼1000 M1500 Å < −20.1 mag galaxies at 6.5 < z < 7.5, by virtue of its large survey area. JADES-Medium will detect almost $100{{\ \rm per\ cent}}$ of M1500 Å ≲ −20 mag galaxies at z < 8.5 due to its significant depth, however, with its smaller survey area it will detect only ∼100 of these galaxies at 6.5 < z < 7.5. Cosmic variance results in a large range in the number of predicted galaxies each survey will detect, which is more evident in smaller surveys such as CEERS and the PEARLS NEP and GOODS-S fields.

     
    more » « less